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Abstract 

The suspension-loop construction is used to define a process in a symmetric monoidal category. 

The algebra of such processes is that of symmetric monoidal bicategories. Processes in categories 
with products and in categories with sums are studied in detail, and in both cases the resulting 
bicategories of processes are equipped with operations called feedback. Appropriate versions of 
traced mono&l properties are verified for feedback, and a normal form theorem for expressions 
of processes is proved. Connections with existing theories of circuit design and computation are 
established via structure preserving homomorphisms. 

1. Introduction 

Certain dynamical systems can be tempered to behave as input-output devices. As 

examples, compare the following two types of input-output systems: a field-effect tran- 

sistor (FET), for which an input is a gate potential that controls a current flow within 

the device; and a machine programmed to carry out a specific procedure, for which an 

input is a datum upon which the procedure acts. In the first example an input can be 

viewed as an action on one part of the device which results in a change of state of 

the whole system, including the output port. In contrast to this, an input for the pro- 

grammed machine is an initial state of the device, while an output is an equilibrium 
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state which the machine may reach. Clearly, these two examples represent different 

classes of inputoutput systems. 
In this paper, the notion of a process in a symmetric monoidal category is introduced. 

A circuit, which is defined to be a process in a category with products, is intended to 
model a system such as a FET, while programs, algorithms etc. are modelled by Elgot 

automata - processes in a category with sums. 
The algebra of such processes is that of monoidal bicategories equipped with an 

operation called feedback. Compact closed categories and Cartesian bicategories [6] 
have been used as a model for circuit design [ 11,4] as well as a paradigm for the 
semantics of computation [l]. Due to the symmetry of the structures there investigated, 

these models, unlike the one here presented, are unable to treat the asymmetric nature 
of the roles of input and output in processes. 

After presenting some basic definitions in the following two sections, a link is made 
in Section 4 with the theory of traced monoidal categories [12]. A normal form theo- 
rem for expressions of processes is also proved. Behaviours and equilibrium states of 
circuits are then defined (via structure preserving homomorphisms), providing precise 
connections with some existing theories of circuit design. In Section 6, we introduce 
Elgot automata and briefly discuss the relation with iteration theories [3]. 

The reader may ask: are bicategories, rather than categories, necessary for modelling 

processes? While the objects of any abstract category may be thought of as states, 
and the arrows as processes, the kinds of processes discussed above have internal 
structure and may be compared. As these comparisons naturally arise as 2-cells, the 
above question must be answered in the affirmative. In most systems it is the internal 
structure that is interesting, Indeed, complex systems constructed with the operations 
series, parallel and feedback may have neither input nor output. Bicategories play an 
essential role in modelling these structures. 

2. Processes in a symmetric monoidal category 

We begin by defining the suspension-loop construction and apply it to symmetric 
monoidal categories (C, 18). This yields a symmetric monoidal bicategory OZ(C, @), the 

bicategory of processes in (C, @Q). The notions of infinitesimals and delayed processes 
are then introduced. For legibility, we write as if our monoidal categories were strict. 
The symmetry for a tensor will usually be denoted by C.YY : X @ Y + Y @X. 

2.1. The suspension-loop construction 

If (C, 8) is a symmetric monoidal category, let C(C, @) denote the suspension of 
(C,@), the bicategory with one object, whose l-cells and 2-cells are the objects and 
arrows of C respectively, and where horizontal composition is given by the tensor prod- 
uct and vertical composition is the same as the composition of arrows in C. The struct- 
ural isomorphisms and functoriality of @ guarantee that C(C,@) has the identity, 
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associative and middle-four interchange laws. Furthermore, 

duces a symmetric tensor product on C(C, 8) which, when 

big&y, is also denoted by 8. 
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as 63 is symmetric, it in- 

there is no cause for am- 

Let N denote the additive monoid of natural numbers, that is, the one object category 

generated by one arrow. If 99 is a bicategory, let QW denote the bicategory of functors, 

lax transformations and modifications from N to B. (See [2] for more on these and 

other bicategorical notions.) Explicitly, we have: 

l an object of 52B is an endomorphism in $3, X : a -+ a; 
l anarrowfromX:a-,atoY:b~bisapair(U,a),whereUisanarrowand~ 

is a 2-cell in 33 of the form 

X a-a 

b-b 
Y 

l and a 2-cell from (U,a) to (V,& is a 2-cell 6 : U 4 V in B such that 

f2C!3 may be thought of as the loop space of B. As this bicategory is a ‘functor 

category’, a symmetric tensor on &9 induces one on GV?J in a natural way. 

Definition 1. If (C,@) is a symmetric monoidal category, the symmetric monoidal 

bicategory sZC(C,@) is called the bicategory ofprocesses in (C,@). An arrow in this 

bicategory is called a process in (C,@). 

A process (U, a) : X + Y is said to have U as its state-space, X as its input and 

Y as its output; the morphism a : X @ U -+ U ~3 Y is referred to as the dynamics of 

the process. The terms Xi and Yj in the expression 

(U,a):Xl @I...@& 

are respectively called the ith input and the jth output of the process. 
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2.2. Injinitesimals and delayed processes 

An infinitesimal is a process whose state-space is I, the unit for 18. The arrows in 

C which can be constructed from identity arrows using only the structural properties 

of @ are referred to as the constants for @. So, the constants in a symmetric monoidal 

category are those arrows built from identities and symmetries (as well as the unit 

and associativity isomorphisms, of course) by repetitive application of composition 

and the tensor product. (So, in giving a constant one gives a family of objects and a 

permutation of that family.) A wire is defined to be an infinitesimal whose dynamics 

is a constant. If 8 is a product, the meaning of constant is extended so that it refers 

to arrows which may be built out of identities, symmetries, projections and diagonals. 

We extend the definition of the term constant in a similar way if the tensor is a sum 

(that is, we include injections and codiagonals). A wire whose dynamics is a constant 

built out of only identities and symmetries is called a permutation wire (or, merely, a 

permutation). 

The reason why such processes are called infinitesimals will be made clear in 

Sections 5 and 6, wherein behaviours of processes are defined. 

Given a process of the form 

and i E [n], construct a new process 

where 

This process is said to have been formed by delaying the ith input on (U, a). Similarly, 

the process 

is said to have been formed by delaying the jth output of (U, a). Note that delaying an 

input or output X of a circuit may be achieved by composition with the circuit (X, In) : 

X + X; for example, if (U, cc) is a process with input X, (U,U)~ = (U,a) . (X, In). 

Of course, iterating and combining both procedures may result in processes that have 

had their inputs and outputs delayed several times. This terminology will be justified 

in Sections 5 and 6, where it will be shown that processes model devices that can 

store both inputs and outputs for set periods of time. 

The following two evident propositions relate composition and tensor product with 

delays. 

Proposition 1. Let 

(U9~):X--+Yl@..-~YY, and (V,~):Y,@...@Y~+Z 
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be processes. Then for all i E [m] the unit and associativity isomorphisms of @ yield 

the following natural isomorphisms: 

1. (V,P). y,(U,a)” (KB>Y, .(U,a); 

2. z(v,B).(u,cr)~~z((v,B).(u,a)); and 

3. (V,P).(U,~)x “((KB).(U,a))x. 

Proposition 2. Let (U, a) : Xl @ . . . @X, -Yl@...@Y, and(V,/?):A+Bbepro- 

cesses. Then for all i E [n] and j E [m] we have the following natural isomorphisms: 

1. (U,~)X @ (v,P) g ((U,u) @ (K/9)x,; and 

2. Y,un+wm~ Y,w,mv,P)). 

3. Circuits 

An operation fb, which is an abbreviation of the word feedback, is defined for 

bicategories of processes in categories with products. We then construct diagrams for 

expressions in such bicategories. Finally, some brief remarks are made regarding the 

connection between these processes and dynamical systems. 

We adopt the following conventions when working in categories with products. If 

A and B are objects and f is an arrow, AB and Af denote A x B and 1~ x f re- 

spectively. Given a family of maps (xi : S + Xi)iE[n], where n is a natural number, 

(xi,. . ,x,, ) : S + XI . . .X, denotes the unique map defined by the universal prop- 

erty of products. Furthermore, a composite of the form f. (XI,. . . ,x,) will often be 

written as just f (xl,. . . ,xn). If 4 : [j] + [n] is an injective function, we will write 

P&,,...X,,,, : & . ..xl + &(I) . . .X$(j) for the obvious composite of symmetries and 

a projection (except, of course, in those circumstances where this notation would be 

ambiguous). 

3.1. Feedback of circuits 

If C is a category with finite products, write Circ(C) for QC(C, x). A process in 

(C, x) is also called a circuit in C. 

Suppose (U, u) : X 18 Y + Z @ Y is a circuit in C with the property that there exists 

r : XU -+ Y such that the diagram 

is an equalizer in C where p’y : XYU + Y and py : ZYU -+ Y are projections. (Note 

that there can exist at most one map r satisfying this condition.) In this case we say 

Y can be fed back in (U,a); also, r is called the structure map for feeding back Y 

in the circuit. For any triple of objects X, Y and Z in C, define (C, x)$,~ to be the 

full subcategory of Circ(C) (X @ Y,Z @ Y) consisting of those circuits which have a 

structure map for feeding back Y. 
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Definition 2. The ftmctor fb(C, x )i,z : (C, x )i,z + Circ(C) (X, Z) is specified as fol- 
lows: 

(a) If (U, a) E ob((C, x);,,,) has a structure map r for feeding back Y, 

fb(C, x),&(U,~) = (VPUZ. a. (&,Y). (h, 7)) E CWc)(Kz). 

(b) If (U,cr),(V,fi) E ob((C, x)&) and 0 : U + V defines a 2-cell from (U,a) 

to (V,/?) in Circ(C), e : U + V will also define a 2-cell from fb(C, x )i,,,( U, LX) to 

fb(C x $,A K P). 

To see that this last statement is true, let us first consider the diagram 

~‘%,)~(1,“~~) 
Pr,a 

* 
xu *XYU 

P’y 

,Y 

XYO 1, 

where r and Q are the structure maps for feeding back Y in (U, ct) and (V, j?) respec- 
tively. 

The condition that 8 : U --f V defines a 2-cell from (U, ct) to (V, /?) is 

(ezr) . cI = p . (me). (1) 

Therefore, 

p;. p. (x-ye) = p;. (ezy)u 
=py.u. 

We also have that pk . ( XYO) = py. These last two results, when combined with 
the fact that the top and bottom lines of the above diagram are equalizers, imply the 
existence of a unique x : XU + XV satisfying the equation 

we)4xcu,y)~um,~) =w~,~)4~,~)~~. 

If (x, 24) is any arrow into XV, 

(2) 

(~e).(x~~,~).(i~,~)(~,~) = (~,m4,w), 

and 

(lw, 0) . x(x, u> = (x(x, u), fJ . x(x, u)). 

So by Eq. (2), x(x, u) = (x, e(u)) and r(x, U) = 0(x(x, u)). That is, 

x=xtI and r=a.X=c.(XB). (3) 
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Also note, 

mw. (lxu,o. (xe))(x,u)=(x,e(u),a(x,e(x,u))) 

= (lxv, 0) . (XWX, u>. 

Finally, 

(e.0. ~~~.~w~,~)~u~,~) 

= PVZ . (ezy). c1. (&,Y). (ixU,O. we>> (by (3)) 

= PVZ’B’(XYB)‘(XC~r).(ixv,a.(X8)) @Y (1)) 

= pvz . P . (xc~,~I. (xer). (h,fl. we)) 

= PVZ . fi. (&V,Y) . (hV, a>. (x6 (by (4)). 

Thus 0 defines a 2-cell from tb(C, x)i,,,(U, a) to fb(C, x)&( V, fi). Clearly tb(C, x);,~ 
is ftmctorial. If there is no cause for ambiguity, fb(C, x):,~ will be written as fbi,,. 

So the symmetric monoidal bicategory Circ(C) can be equipped with a family of 
partially defined functors 

fb;,, : Circ(C)(X @ Y,Z @ Y) -+ Circ(C)(X,Z). 

The reader is reminded that in [12] a trace for a balanced monoidal category V was 

defined to be a natural family of functions 

Tri,z : Y(X ~3 Y,Z 63 Y) + Y(X, Z) 

satisfying three axioms. In the next section, we will show that feedback satisfies the 
defining properties of a trace, with the equations being replaced by natural isomor- 
phisms. In fact, for suitable C, Circ(C) is a locally full sub-bicategory of a compact 
closed bicategory. (This fact will be treated in a future paper.) 

There are enough equalizers in categories with products so that suitably delayed 
circuits can be fed back. Given (U, a) : X8 Y +Z@Y,itisclearthatpra:XYU--t Y 

will be the structure map for feeding back Y in (U, a)~. Also pi : XUY -+ Y will 
be the structure map for feeding back Y in r(U, a). We leave to the reader the verifi- 
cation of 

Proposition 3. For any (U, a) : X @J Y -+ Z ~3 Y, cy,u : W + W defines a natural 
isomorphism 

fi;,,w, E>Y> = (W, WZ,Y . a) 

g (UK(UCZ,Y) . fx. Gfw,Y)) 

= fG,Z(YW a)). 
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Another operation, which might be called feedback, can be defined for processes in 

any symmetric monoidal category as follows: 

feedback @ : WC, 63)(X 69 Y, Y 63 Z) + QC(C, @)(x,Z) 

: (U,a) I--+ (Y 69 U,(CU,Y @Z).a). 

If (U, a) : X @ Y + Y 8 Z is a circuit, 

feedback@(U,cr) = Ib&((U,(Ucy,z) . cl)y). 

Though this more general feedback operation is important (and may, in fact, be treated 

in a very elegant fashion), it will not be studied independently in this paper. We should 

remark that feedback@ does not satisfy all the axioms for a trace. 

3.2. Circuit diagrams 

The advantage of being able to draw diagrams for expressions in monoidal categories 

have long been recognized. Circuit diagrams - diagrams associated to expressions of 

circuits - are to be read from left to right (unlike the string diagrams depicted in [12]). 

A circuit of the form (U, a) : Xl @ . . . 8X, + YI @ . . . @ Y, is represented by the 

diagram 

In Fig. 1 circuit diagrams have been drawn for all the operations discussed so far. 

The expressions corresponding to the diagrams in Fig. 1 are: 

(a) (F’,@.(U,a), where (U,a) :X -+ Y and (V,j3): Y + Z; 

(b) (u,cc)@(V,P), where (U,a):Xl 

(cl fG,,(U, cc>; 
(4 y,(U,c1) : X -+ Y; 
(e) (U, a)~ : X + Y; 

(0 (4 lx) : x -+ x; 
(g) (Am) : x -+ 1; 
(h) (I,&) :X +XBIX; 

(i) V,CX,,X,) :X1 8X2 -X2 @Xl; 
(j) fi,&(U,cc)y :X --+ Z; and 

(k) (KP)u .(U,a), where (U,CI) :X 

- + Y, and (V,/?) :X2 + Y2; 

Y and (V,p) : Y -+ Z. 
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u P 

(4 x u Y v -c)‘I> z 

(b) 

x, 

(0 x x 

6) x-<I 

X Z 

W 

u 

X $5 Z 

cc> u 

Y 

(k) x z 

Fig. 1 

Notice that, in the above diagrams, there are two types of labels associated with 

wires: letters at the same level as the wires - for example, the letters X, Y and Z in 

(a); and letters above the wires which denote delays, as in (d) and (e). (j) and (k) 
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have been included to indicate that wires need not be labelled twice. Furthermore, 

when drawing composites of wires there is no need for an indication of the domain 

and codomain of each term in the expression. 

3.3. Circuits and dynamical systems 

Engineers realized long ago that many dynamical systems may be both studied 

and built using three operations: series (or composition); parallel (or tensor prod- 

uct); and feedback. Consider the functor category SetN, where N denotes the ad- 

ditive monoid of natural numbers. To give an object of this category is to give 

a set, U, and an endomorphism of that set, a : U -+ U. Such an object is a 

model of dynamical systems with a state-space U which have the property that if 

the system has the state u E U at a particular point in time, the system will have 

the state LX(U) E U at a specified unit of time later. The category SetN is iso- 

morphic to the category Circ(Set) (Z,Z), where I is the terminal object 

of Set. 
An expression in Circ(Set) (the evaluation of which is a circuit) from I to I will 

give us a dynamical system of the form a : U, . . . U,, -+ Ul . . . U,,; that is the set of 

states of the resulting system will be expressed as a product, though the action may 

not be. In fact, any dynamical system of the form LX : UV -+ UV can be realized as the 

evaluation of the expression fbyl(( V, cu, y .a)~). More generally, expressions of circuits 

will indicate the ‘dynamic dependence’ of each component of (the state-space of) the 

system upon the other components. For example, the composite of (U, a) : I + X and 

(V, /?) : X + Z gives rise to the dynamical system 

The U-component of a future state of this system is determined just by the U- 
component of the present state, while the V-component will depend both upon the 

variables u and u. From the diagram associated to a general expression of circuits we 

can see at a glance the components upon which any given component may depend. 

Given a system CI : U1 . . . U,, ---t U, . . . U, suppose we were interested in the possible 

behaviours of just one of the components, a. In general, all the elements of Ul . . , U,, 
must be considered as possible initial states for a behaviour; but by knowing on which 

components Vi depended, the number of starting states that need to be taken into ac- 

count in order to determine the behaviours of Ui is greatly reduced. These consider- 

ations are clearly relevant to the study of dependence (and independence) structures in 

distributed systems [9,14,18]. 

Note that if X, U and Y are finite sets, the circuit (U,a) : X + Y is precisely a 

Mealy automaton [ 161. The bicategory Circ(C), therefore, also provides a calculus for 

studying Mealy automata. 
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4. Properties of feedback 

The main result of this section will be a normal form theorem for expressions in 

bicategories of circuits. Before getting to this, a number of properties satisfied by the 

feedback operation will be examined, including the axioms for (a bicategorical version 

of) a trace. The isomorphisms referred to in the theorem and propositions of this 

section are natural (the variables being, of course, the circuits used in the results). 

The verification of this is straightforward and left to the reader. Also, we will write as 

if composition in our bicategories were strict. (Note that the identity and associative 

isomorphims for horizontal composition in the bicategory sZC(C, @) are constructed 

from the identity and associative isomorphisms for @.) 

4.1. Traced monoidal properties 

The following proposition claims that the operation fb$,z is natural in the variable Y. 

This is referred to in [12] as the sliding axiom for a trace. 

Proposition 4. If (U, ct) : X @ Y + Z 63 W and ( V, j) : W + Y are circuits, Y can be 

fed back in (ZC~(V,/?)).(U,C() :X8 Y + Z 8 Y if and only if W can be fed back in 
(U, a). (X @ (V, fl)) : X @ W + Z @ W. Moreover, cu, v defines the 2-cell isomorphism 

G,,((Z @ (V>P)) . (Kco) = fi&ww (X @ (v,P))>. 

In terms of circuit diagrams, we have: 

(4) 

a 

x p u ?a VY 

W 

.Z 

= 

2 

x 
U P z ifI&? WV 

Y 

Proof. First we note that 

(Z 8 (V,P)) . (U,a) = (uK(ucz,vy). (U-m. (aV>> 

and 

(U,a) ’ (X @ (V,B)) = (W,(Va). (ot,Y~)~ WV). 

Suppose Y can be fed back in (Z @ (V, p)) . (U, a), and let 0 : XJV --+ Y be the 

structure map. That is, (XCUV, r) . ( I~v, 0) : XUV + XYUV is the equalizer of the pair 

p;,py . (UCZJY). (UZ/?). (uV) :xYuv -+ K 
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where q = pwz + (Vu). (CXJW) . (X/W). (XC,W) . (lm, 7)). We now have 

puz .4x, u, u) = puz . cI(x, 0(x, u, o), u) 

= PUZ . ~0, PY . P(r(x,~, u), u), u) (by (5)) 

= Puz . r(x, u, u), 

and 

pv .4X, 4 u) = pv ’ P(pw .4x, qx, u, u), u), u) 

= Pv . B(r(x, 0, u), u) 

= pv . r(x, 0, u). 

So clearly, CU,V : UV -+ W defines a 2-cell 

fi~z((Z@(KB))*(UP))=qz((U,a)~(X@(KP))). 0 

The naturality of X and Z (or the tightening principle) is the claim of 

Proposition 5. If Y can be fed back in the circuit (U, E) : X 8 Y -+ Z 8 Y, Y can also 

be fed back in (( W, y) @ Y) . (U, CI) . ((V, p) @ Y) : X’ 8 Y + Z’ EJ Y, for all circuits 
( W, y) : Z --t Z’ and (V, p) : X’ -+ X. Moreover, the unit and associative isomorphims 

for 8 yield a 2-cell isomorphism 

(Ky)@,,(U,a)qJq = fb;f,z4((JKY)@ Y).(U?@).((KB)@ Y)). (6) 

In terms of circuit diagrams, we have: 

Proof. Considercircuits(U,cr):X@Y+ZZY, (V,P):X’+Xand(W,y):Z+Z’. 

Let 

where 

& = ( WyY) . ( wzcy, w) . (Va W) . (/3WW) . (X’q VUW). 
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Suppose that we can feed back Y in (U, a), and let 19 : Xu + Y be the structure map. 
Then we know for all maps (x,u) into XU 

PY . a(4 &x, u), u> = etx, u). (7) 

We claim that I+G = 8 . pm . /HJW : X’ VUW + Y is the strucuture map for feeding 

back Y in ( VUW,E). First note that for all (x’, u,u,w) 

PY . 6 . w’cvu W,Y) . wvw Icl)(x’, v, u, w) 

= PY. ~W(PX~ P(x’m),u) 

= PY . 4Px . P(x’, u), &Px . lw, v>, u), u) 

= &PX . P@‘,u),u) (by (7)) 

= lj(x’, u, U, w). 

Second, if (x’, y, u, U, w) is a map such that pY . ~(2, y, u, u, w) = y, then we have that 
y = pY + a( pi . j?(x’, u), y, u). Since 0 is the structure map for feeding back Y in (U, tl), 
we have that 

Y = @Px . P(X’,U),~) 

= $(x’, u, u, w). 

so X’cww,y.(lxlw&$) : X’VUFV --) X’YVUW is the equalizer of the pair pk, pY *E : 

X’YVUW + Y, meaning that I,$ is the aforesaid structure map. A straightforward 
calculation will now verify the existence of the isomorphism (6). 0 

Note that the converse of the first statement of the above proposition is not true. 
The following is a counterexample. Let 

X = Y = {1,2}, I = {*} 

and 

u:xY-+Y 

:(l,l)++ 1 

(1,2) +-+ 2 

(2,l)H I 

(2,2) H 1. 

Consider the circuit in Set, (Z, a) : X @ Y + I @ Y. If E is the equalizer of p$, pY . u : 
XY + Y, clearly IEl = 3. So (1, tl) cannot have a structure map for feeding back Y. 

Now, if we consider the circuit (I,z) : Z + X, where 2 : I --t X : * H 2, then 

(I, a) . ((Z,Z) @ Y) = (1, tL . (ZY)) : I @ Y --) I @ Y. 
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Since 

a. (ZY): Y + Y 

:1-l 

2Wl 

has a unique fixed point, Y can be fed back in (Z, tl. (jr)). 

The following two propositions show that feedback satisfies, what is referred to in 

[12] as, the vanishing axioms. 

Proposition 6. For any circuit (U, a) : X + Y, the unit isomorphism for @ defines 

the 2-cell isomorphism 

fi&,y((U,a) @ (4 11)) g (Ca). (8) 

In terms of circuit diagrams, we have: 

Proposition 7. Let (U, a) : X @ Y @3 2 + A @ Y @ Z be a circuit. Zf we can feed back 

both Z in (U,a) and Y in fbgBKARY( U, a), we can feed back Y @Z in (U, a). In this 

case, 

fiS,A(fi&4@Y(U~ a)) = fix,.4 ‘@‘(U, a). (9) 

In terms of circuit diagrams, we have: 

a 

?sizT 
a 

x A x 
u = 

Z 
Y 

c& 

A 
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Proof. Let 0 : XYU -+ 2 be the structure map for feeding back 2 into (U, a) : 

X@QY@Z-+A@Y@Z. Then we have for all (x,y,u) 

Pz ’ 46 Y, @, Y, u>, u) = Q, y, u). (10) 

so 

f&Y,A@zuJ~) = (U, Pu4Y . a. WQr,z) . (bfYu, 0)). 

Let $ : A7J + Y be the structure map for feeding back Y into tb~Br,,By(U,a). Then 
for all (x,24) 

PY .4x, w, u), Q, Icl(x, u), u), u) = be u>. (11) 

The claim is that y = (py, 13). (XC~J) . (lm, II/) : XU -+ YZ is the structure map for 
feeding back Y 8 Z into (U, LX). To see that (Xc~,~) . (l~r/, y) is the equalizer of the 
pair p’=, pu . u : XYZU + YZ, first note that 

prz . G, w, U)> @, VW, u), u), u) 

= (rC/(x,u>,e(x,~(~,~),~)) (by (10) and (11)) 

= Yb, u>. 

Furthermore, suppose there exists a map (x, y,z, u) such that 

Pn ~4% Y,G u) = (YJ). 

Then z = 0(x, y, u), since 0 was the structure map for feeding back Z. Therefore, 
py .01(x, y, 0(x, y, u), U) = y and, since Ic/ is the structure map for feeding back Y, y = 

Ii/(x, u). Thus, 

(x7 Y?, u) = (x3 PY . Yk u), Pz . Yh u), u). 

So, y is the sought for structure map. Eq. (9) follows from a straightforward 
calculation. 0 

It is easy to find a counterexample to the converse of the above proposition. Let 

Y=Z={1,2}, I={*) 

and 

u:Yz-+ YZ 

: (191) H (1,l) 

(132) I--+ (2,1> 

c&l) ++ (L2) 

c&2) H (1, l), 

and consider the circuit (1, a) : I @I Y @ Z + I @ Y @ Z. 
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CJ 

x I-:i u 

Y 

z x 
A 

II 

/r 

A 0 V B 

Fig. 2. 

Since M has a unique fixed point, Y @Z can be fed back into (I, LX). Notice, however, 

if E is the equalizer of pk, pz . CI : YZ 4 Z, [El = 1, while \YI = 2. So, Z cannot be 

fed back into (Z,a). 

Proposition 8. Suppose Y can be fed back in (U, a) : X 8 Y ---f Z 8 Y. Then for any 

(V, /3) : A --) B, Y can be fed back in 

(Z~(~,~~,E))~((U,~)~(V,P)).(~~(~,~A,Y)):~Y--,ZBY. 

Furthermore, the unit and associative isomorphisms for 8 define the 2-cell isomor- 

phism 

(12) 

In terms of circuit diagrams, we have Fig. 2. 

Proof. To begin with, observe that 

(Z~Dz,CY,~)).((U,~)~(V,P)).(~~(z,CA,Y))=(UV,&), 

where 

E = (Ucz,vBY) . (U.&,VE>~ (u x P) . Wqwv). 

Suppose that fI : XU -+ Y is the structure map for feeding back Y in (U, a). We will 

show that y = 0. pm : X4 UV -+ Y is the structure map for feeding back Y in (UV, E). 

We know that (Xcr,,r).( lm, 0) : A7J + XYU is an equalizer of p’y, py.a. Therefore 

((XCU, Y ) . ( lx~, @)A V : XJA V --f XYUA V is an equalizer of 

(p;)AV, (py . cr)AV : XYUAV + YAV. 

In fact, ((Xcu,r) . (lm, f3))AV will also be an equalizer of the pair 

p’r, py . (NAV) : XYUAV + Y. 
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So, (X~C~V,~) . (l~“y, 7) : XAUV -+ XAWV is an equalizer of 

p:,pr.(aAV).(Xc~,WV):~WV~ Y. 

Clearly, then, (X&V, r) . ( I~uv, y) is also an equalizer of 

p’,,py~E:XAYUV+ Y. 

That is, y is the aforesaid structure map. A straightforward calculation yields isomor- 
phism (12). 0 

This last result shows that feedback satisfies the superposition principle for a trace. 
The final axiom for a trace is yanking. For feedback, this amounts to 

Proposition 9. For all X there exists a 2-cell isomorphism 

(13) 

In terms of circuit diagrams, we have: 

xFyx = x x 

The following proposition is needed for proving Theorem 1. 

Proposition 10. For any two circuits (U, a) : X -+ Y and (V, j3) : Y + Z, Y can be 

fed back into (Z, CYJ) . ((U, a) @ (V, /3)) and, moreover, 

(KD).(Qa) g fb((4 CY,Z) . ((u,a) @ (V,B))). (14) 

In terms of circuit diagrams, we have: 

x$-y&z = x--z 
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Proof. Note that, by the functoriality of C9, 

Therefore, 

~~~,,(((v,B)~(z,lY))~(I,cY,Y).(1,1,2).((u,a)~(I,lY))) 

~((V,P).~~,y((z,c~,~).(z,1~2)).(U,a) (using (6)) 

2 (V,/?).(U,a) (using (13)). 0 

4.2. Normal form theorem 

We are now in a position to prove a normal form theorem for expressions in bicat- 
egories of circuits. (In fact, the only ingredients used in the proof are the properties of 
a traced symmetric monoidal category.) For the rest of this section, lowercase Greek 
letters will be used to denote circuits. By a circuit we will mean an expression of the 
form & :X, @...@X, + Y, 8. . . @ Y,. It is clear what is meant by the tensor product 
or feedback of such circuits, Let SX, r = (I, CX, r ) : X 123 Y + Y ~3 X be the symmetry 
for the tensor in a bicategory of circuits. When there is no cause for ambiguity or 
when precise specification is not relevant, the symmetry will be written as s = SX, r. 

Similarly, lb& will often be written as RI. 

Theorem 1. Any expression constructed from the circuits al,. . . , a, via the operations 

composition, tensor product and feedback is naturally isomorphic to an expression of 

the form fb(7-t. (aI I%. . ’ @ a,,) ’ n’), where n and TT’ are permutation wires. 

Proof. Let r be an expression constructed from the circuits al,. . . , a,, via the opera- 
tions composition, tensor product and feedback. By Proposition 10, we can replace ev- 
ery occurrence of a composite in r, say E. q, by an expression of the form fb(s(q 8 E)). 
So we can assume the only composites occurring in r are ones of the form s. y. 

For any expression r, let #fb( r) be the number of occurrences of the feedback 
operation in r. Before proceeding by induction on #fb( r), we note some simple 
relations between composition with permutations and the tensor product and feedback 
operations. 



160 P. Katis et al. IJournal of Pure and Applied Algebra 115 (1997) 141-178 

If E and r] are circuits and rc is a permutation wire whose codomain equals the 

domain of E, there are permutations p and p’ such that 

and 

(7c. E) 8 q = p’ . (E 63 q). 

Also, given a circuit E and permutations rr and rc’ of the input and output of tb(s), 

there exist permutations p and p’ such that 

n . fb(&) .7c’ E fb(p . & . p’). 

For the case #fb( r) = 0, clearly r 2 rc . (al @ + . . 631 a,), for some permutation 7~. 

So, by the isomorphism (8), the claim of the theorem holds. 

Assume that the theorem is satisfied if #tb( r) = n, where n > 0. Suppose #lb( r) = 

n + 1. Then there exist expressions @ and Y and a permutation rci such that r is 

naturally isomorphic to rci . (fb(@) 8 Y). We know by Proposition 8 that there are 

permutations 7-c~ and rci such that 

fb(@) 63 Y ” fi(7-b. (CD @ Y) .7c;>. 

Therefore, 

T = 711 . fb(7c2 . (@ 8 Y) .7c;> 

= fb(7c3 . (@ @ Y) . Q, 

where 1r3 is a permutation. 

Note that #fb( @ ~3 Y) = n and @ ~3 Y must be constructed from the circuits al,. . . , ct, 

and permutation wires. So by the induction hypothesis, 

@ ‘8 Y = fb(7c4 . (Lx, @ . . .@ a,) .7ci), 

where 714 and rri are permutations. Therefore, there are permutations rc and rc’ such 

that 

= flJ(fb(7c . (cq @ . . . cc a,). n’)) 

= fb(n . (cq @ . . . ~3 a,) . z’) (by Proposition 7). 0 

The proof of the above theorem provides an algorithm for converting any expression 

of the circuits ~11 , . . . , a, into an expression of the form tb(rc . (al @ . . . ci$ a,) . n’). In 

fact, it is clear this algorithm can be generalized in order to handle the situation when 

our expressions are built out of a finite number of specified components. 
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5. Behaviours and equilibrium states of circuits 

Only circuits in Set will be considered in this section. The constructions presented 

here may also be defined for circuits in a topos with a natural numbers object. 

5.1. The homomorphisms behaviour and equilibrium 

Let us recall the notions of equilibrium and behaviour which we intend to generalize. 

Consider the global sections hmctor 

SetN( 1, -) : SetN + Set 

where 1 is, of course, the terminal object of SetN. A natural transformation f : 1 + 
(X, a) is called an equilibrium state of the dynamical system (X,a). So the global 
sections functor sends a dynamical system to its set of equilibrium states. 

For the rest of this paper N will denote the set of natural numbers. Let T : N + Set 
denote a representable functor in SetN. Suppose (X, E) is any other dynamical system. 
Then to give a natural transformation f : T --+ (X,a) is to give a sequence (Xi)iEN 

of elements of X such that a(xi) = xi+l. We call f a behaviour of (X,U). Thus the 
functor 

Set?(T,-) : SetN + Set 

will send a dynamical system to the set of behaviours of that system. 
In this section the bicategories Circ(Set) and Span(Set) will be written as Circ and 

Span respectively. Spans from X to Y will be represented by ordered triples (p, W,q), 

where p : W -+ X and q : W + Y. We call p the first leg, q the second leg and W 

the centre of the span. 

If (U,ol) : X -+ Y is a circuit, an element of U is called a state of (U, a), and an 
element of X or Y is referred to as an input or an output for (U, a) respectively. 

Definition 3. The following data define the homomorphism 

equilibrium : Circ -+ Span. 

(a) If X is an object of Circ, equilibrium(X) = X 
(b) If (U,a) : X + Y is a circuit, let 

w = {(x, 24) E xu 1 prJ . a(x, u) = u}, 

p: W~X:(x,u)HX, 

and 

q : w -+ Y : (x, u) ++ py . a(x, u). 
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Then, equilibrium(U, a) = (p, W, q). If (x, U) E W, u is called an equilibrium state of 
the circuit. 

(c) If 0 : (&a) -+ (v,P> is a 2-cell between circuits, let W and W’ be the centres 
of equilibrium( U, tl) and equilibrium( V, fi) respectively. Then 

equilibrium(O) : W --+ W’ 

: C&U) +-+ (4 O(u)) 

defines a 2-cell in Span. 

Implicit in the above definition is the claim that the above data define a homomor- 
phism of bicategories. We will only present the proof that composition of arrows is 
preserved up to a natural isomorphism. 

Let (U,a) : X + Y and (V,/_?) : Y -+ Z be circuits. Then the centre of equili- 
brium( V, /?) . equilibrium( U, a) is the set 

S={(x,u,y,v)EXUYVI pl,l*a(x,u)=u, py.a(x,u)=y 

and PV . P(Y, v) = v)}, 

while the centre of equilibrium(( V, p) + (U, LX)) is the set 

w = {(x9 4 0) E XJv I (PC/ .4x, u), pv * P(pr . tl(x, u), ?I)) = (u,v)}. 

The function 

is bijective, since the rule (x, u, V) H (x, u, py . a(x, u), v) defines a function that is the 

inverse of &,,),(v,~Q. It is straightforward to check that this isomorphism is natural in 
the variables (U, a) and (V, 8). So equilibrium preserves composition. 

Definition 4. The following data define the homomorphism 

behaviour : Circ + Span. 

(a) If X is an object of Circ, behaviour(X) = XN. 
(b) If (U, a) : X -+ Y is a circuit, let 

: (xi, ui, yi)iEN H (XihEN 
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and 

q:W-+Y N 

Then, behaviour( U, CI) = (p, W, q). An element w E W is called a behaviour of the 
circuit, while p(w) and q(w) are respectively called the corresponding input and output 
behaviours. 

(c) If e : (&~I + (KP) is a 2-cell between circuits, let W and W’ be the centres 

of behaviour( U, a) and behaviour( V, fi) respectively. Then 

behaviour(0) : W + W' 

: (xi, ui, YihEN H (xi, &ui), yi)iEN 

defines a 2-cell in Span. 

Implicit in this definition is the statement that the above data define a homomorphism 
of bicategories. Again, we will only prove that composition of arrows is preserved up 
to isomorphism. 

Let (U,or):X -+ Y and (V,B): Y + 2 be circuits. Then the centre of beha- 
viour( V, /?) . behaviour( U, a) is the set 

S= {(Xi,ui,yi,y(,vi,zi)iEN 1 Vi E N +i,ui) = (“i+12Yi)3 Yi = Yl 

and j(yi,vi) = (vi+l>zi)}, 

while the centre of behaviour(( V, /I) . (U, a)) is the set 

The function 

1 (Xi, Ui, J’i, J’i, ui,Zi)icgN H (xi, ui, vi,Zi)iEN 

is bijective, since the rule 

(xi, ui, VitZi)iEN H (xi, ui, pY ’ a(-%, %>t PY . a(-%, Ui>, vi, PZ . ~(PY . +i, Ui>, vi))iEN 

defines a function that is its inverse. The function d~u,~j, (v,B) defines an isomorphism 
of spans that is natural in the variables (U,a) and (I’, 8). So behaviour preserves 
composition. 
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Fig. 3 

Notice that, on the category Circ(l,Z), equilibrium and behaviour coincide with 
SetN(l, -) and Sep(T, -) respectively. 

5.2. Remarks on the interpretation of circuits 

A circuit (U, rx) : X -+ Y models a system whose motion is controlled by a set 
X of actions. That is, if the state of this system at a particular point in time is 
u E U and the system is then acted upon by x E X, the system will change its 

state to pu . a(x,u). Accompanying this change of state is the output py . a&u). 
A behaviour of the system is determined by an initial state and a sequence of ac- 
tions. Fig. 3 should elucidate these remarks. The figure represents a span of cate- 

gories. The centre of this span is the free category on the directed graph with vertex 
set U and whose edges from u E U to u’ E U are pairs (x, y) E XY such that 
a(x,u) = (u’, y). This category records both the states and the possible motions of 
the system. The domain and codomain of the span are respectively the free monoid 
on X and the free monoid on Y. The fact that the elements of X act on the sys- 
tem can now be expressed by stating that the left leg of this span is a discrete op- 
fibration. 

Let us consider the behaviours of an infinitesimal, say (I, a) : X + Y. As 

behaviour(Z, a) = ( lX~, XN, aN) : XN + YN, 

any sequence (x~)~~N E XN will be a behaviour; that is, there are no internal dynamics 
governing the motion of the circuit as its state-space is I. These structures are called 
infinitesimals since an input x for (I, a) immediately manifests itself as the output a(x). 
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Of particular interest are the wires. Consider the diagonal wire, (Z, dx) : X -+ Xx: 

< 

x 

x 

x 

Though there is a bijection between the set of behaviours of (I, AX) and (I, lx), the 

circuits are different - the output of the first process is Xx, while the output for the 

second is X. So wires are examples of circuits which can be viewed in two ways: on 

the one hand, as distributed bodies with a domain and codomain that can be composed 

with other circuits: on the other hand, as a device which behaves as a single unit or 

equipotential region. 

AS a behaviour (xi, u;, Yi)iEN of (U,CC) : X + Y satisfies the condition a(xi,ui) = 

(ui+i, yi) (instead of the condition cr(ni, ui) = (Ui+i, yi+l )), the reader may well ask 

whether all circuits are, in some sense, infinitesimals. It is true that circuits in general 

may have an infinitesimal aspect, and this is essentially why feedback was not defined 

for all circuits. (Try feeding back an instantaneous not gate.) 

However, as was shown in Section 3, delayed circuits can always be fed back. In 

fact, to give a behaviour of (U,cr)r is equivalent to giving a sequence (xi, ui,~+)i~~ 

such that a(xi, ui) = (ui+i, yi+l). 

5.3. Preservation properties of equilibrium and behaviour 

For the homomorphisms equilibrium and behaviour to be of any interest they must 

preserve the operations we can perform on circuits. The preservation of composi- 

tion has already been shown; of course, before we can talk about the preservation 

of the tensor product and feedback, Span must be equipped with such operations. 

Span is, however, a compact closed bicategory (and hence a traced symmetric 

monoidal). 

Definition 5. A symmetric monoidal structure on Span is defined by the homomor- 

phism @ : Span x Span + Span, the data for which we now present. 

(a) If X and Y are objects of Span, X @ Y = XY. 
(b) If (f, IV, g) : X + A and (p, V, q) : Y + B are spans, 

(f, Kg) @ (P, V,q) = (f x P, wv,cl x 4). 

(c) If 6’ : W -+ W’ and II/ : V + V’ define the 2-cells 8 : (f, W,g) + (f’, W’,g’) 

and~:(p,V,q)~(P’,V’,g’), 8@$=Bx$d fi e nes a 2-cell from (f, W, g) 6% (p, V, q) 

to (f’, W’, 9’) @ (P’, V’, 4’). 
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Definition 6. For any triple X, Y,Z E ob(Span) the functor 

Fb& : Span(X t3 Y, Z @3 Y) + Span(X, Z) 

is defined as follows: 
(a) If (f, W, g) is a span from X @ Y to Z @ Y, let e : E + W be the equalizer in 

Set of the pair py ’ f, pi . g : W --f Y, where py : XY + Y and pk : ZY -+ Y are 

projections. Then, Fb(f, W, g) = (px . f . e, E, pz . g + e) is a span from X to Y, where 
px : XY -+ X and pz : ZY -+ Z are projections. 

(b) Let (f, W,g) and (f’, W’,g’) be spans from X @ Y to Z 63 Y, and suppose 
19 : W --+ W’ defines a 2-cell from (f, W, g) to (f’, W’, g’). Let Fb(f, W, g) = (p,E,q) 

and Fb(f’, W’,g’) = (p’,E’,q’), and let e : E -t W and e’ : E’ + W’ be the equalizers 

as defined above. Then, by the universal property of equalizers, there exists a unique 
function Fb(8) : E + E’ such that 8 . e = e’ e Fb( 0). It is clear that Fb(8) defines a 

2-cell from (p,E,q) to (p’,E’,q’). 

We note that the operation Fb satisfies all the defining properties of a trace (with 
equations being replaced by natural isomorphisms, of copse). 

The main result of this section is 

Theorem 2. The homomorphisms equilibrium and behaviour preserve the operations 

tensor product and feedback up to natural isomorphisms. 

Proof. We only show that equilibrium preserves tensor products and feedback since 
the proof that behaviour preserves these structures is very similar. 

We adopt the following notation. The tensor products on Circ and Span will be 

denoted by &irc and @span respectively, though when considering the tensor product 
of objects we will use @ for both. The action of &irc and @span on horn-categories 
will be represented respectively by 

&f&Y!B : Circ(X, A) x Circ( Y, B) -+ Circ(X @ Y,A @ B) 

@9igB : Span(X,A) x Span(Y, B) + Span(X 8 Y,A 8 B). 

equx, y : Circ(X, Y) + Span(equilibrium(X), equilibrium(Y)) 

will denote the action of equilibrium on horn-categories. 
We now show that equilibrium preserves tensor products by constructing a natural 

isomorphism 

@‘,A,Y,B . ,+,A,Y,B 
. Span ’ (equX,A 

KA,Y,B 
x eq”Y,E) ---) eq”X@Y,A@B ’ @Circ . 

Let (U, a) : X -+ A and (V, /?) : Y + B be circuits. Then the centre of the span 
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is the set 

S = {(x, u, y, U) E XUYV I pu . c((x, u) = u and pv . /?(y, u) = o}, 

while the centre of the span 

is the set 

T = {k y, u, u) 6 XYuv I puv . (a x D)(x, u, Y, u) = (u, VI). 

Clearly 

b$$‘$,rb) : S + T 

: (x, u, y, 0) - (4 Y? 4 u) 

defines an isomorphism of spans. It is straightforward to check that it is natural in 

(Vu) and (KP). 
Let us turn our attention to feedback. The full subcategory of circuits from A’@ Y to 

Z 8 Y for which we can feed back Y is denoted by I : Set;,, + Circ(X 8 Y,Z 8 Y). 

We are required to construct a natural isomorphism 

dxKz : Fb;, . equx@Y,zc3Y . I + equ,,, . fb;,z. 

Suppose that (U, a) :X @ Y 4 Z @ Y is a circuit with a structure map 0 : XU -+ Y 

for feeding back Y. The centre of the span Fb~z(equX8,,,z8~( U, M)) is the set 

S={(x,~,u)~~Ipv~cr(x,y,u)=uandy=p~.cc(x,y,u)}, 

while the centre of the span equX,z(fbi,z( U, CI)) is the set 

T = {(x, u) E XU 1 pu . c((x, 0(x, u), u) = u}. 

By the defining property of 8, py . CI(X, y, u) = y if and only if y = 0(x, u). Thus, 

.K y,z d (&a) : s A T 

: kY,U) ++ (x,u) 

defines an isomorphism of spans. It is easy to check that it is natural in (U,cr). 0 

The scientific value of the previous theorem is that, as one would expect, to give a 

behaviour of a constructed circuit is equivalent to giving behaviours of the components 

of the circuit that agree on the wires. In Computer Science, this is called the composi- 

tionality of behaviour. So we can calculate the behaviours of complicated circuits by 

considering the behaviours of the components and then carrying out the construction in 

Span. In the following example the circuits (U,ct), (V,p) and (W, y) will be denoted 
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Fig. 4. 

A B 

Fig. 5. 

P 
V 

Y @$ 
B 

W 

E 
D 
C 

Fig. 6. 

by a, /3 and y. It is clear there is a bijection between the set of behaviours of the 

circuit 

B E 
fb,,B(~B +wJI,c(r)@ lD).cc) 

with the corresponding circuit diagram shown in Fig. 4 and that of the circuit 

fi~,PD((sE~~~ @ lD>.(Y@ 1B 69 @).(L5 @S&B @ le). (h&4 c3 JB).(SA,E @ P)) 

with the corresponding circuit diagram shown in Fig. 5. Of course, using the results of 

the last section it is easy to see that both these circuits are isomorphic to that in Fig.6 
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5.4. Relations as a model of circuits 

In the remainder of this section a connection will be established between Circ and 

one of the best known examples of a category which admits a compact closed structure 
_ namely, Rel, the category of sets and relations. Using the compact closed structure, 

there is a way to equip Rel with a trace (or feedback operation). Given a relation 

R : X @ Y + Z @ Y, Tr(R) : X -+ Z is the relation defined by x(Tr(R))y if and 

only if there exists y E Y such that (x,y)R(z,y). Rel can be viewed as a locally 

ordered category, and, as the next proposition indicates, is a reflection of the bicategory 

Span. 

Proposition 11. There is a homomorphism A : Span --+ Rel which preserves tensor 
products and feedback. 

Proof. The following are the data for ,4. 

(a) If X E ob(Span), A(X) = X. 

(b) If (f, W,g) is a span from X to Y, x(A(f, W,g))y if and only if there exists 

w E W such that f(w) = x and g(w) = y. 

Recall that if R,S : X --+ Y are relations, we write R < S if and only if for x E X 

and y E Y, xRy implies that xSy. It is clear that if there exists a 2-cell fi-om a span 

(f, W, g) to ( p, U, q), A( f, W, g) 5 A(p, U, q). A moment’s thought will verify that n 

is a tensor product and feedback preserving homomorphism. 0 

The construction /1 abstracts from a span only that information which relates the 

domain to the codomain, ignoring the internal structure of the span. In fact, combining 

this proposition with Theorem 2 yields the result that the homomorphisms 

/1 . equilibrium, /i . behaviour : Circ --+ Rel 

preserve tensor products and feedback. So there are two ways in which a relation can 

be thought of as an abstraction of a circuit. On the one hand, a relation R : X ---f Y 

could be used to model the class of circuits of the form (V, M) : X + Y that satisfy the 

condition: if xRy then there exists an equilibrium state u E U of the circuit such that 

c((x, u) = (u, y). On the other hand, a relation R : XN -+ Y”’ could model the circuits 

with input X and output Y that have the property: if (Xi)iEN R(yj)jE~ then there exists 

a behaviour of the circuit with corresponding input and output behaviours (xi)iEN and 

(Y, )jEN. 
The category Rel has been used to model real circuits in both these ways in 

[ll] and [4]. In this sense, the theory of circuits here developed is more concrete 
than theories using only locally ordered bicategories such as Rel. We wish to point 

out that though Rel models neither the internal state nor the dynamics of processes, 

it is still of interest since calculations there are relatively simple and often 

illuminating. 
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6. Elgot automata 

An Elgot automaton is defined to be a process in a category with sums, and we 

construct a feedback operation for bicategories of such processes. A connection between 

Elgot automata and iteration theories is made via a structure preserving homomorphism 

from G?C(Set,+) to Par, the locally ordered category of sets and partial functions. 

6.1. Feedback for Elgot automata 

If (C, @) is a monoidal category, let @ ‘* be the induced tensor product on Cop. 

Proposition 12. The canonical homomorphism 

@CC,@) : aqc, @a) + (m(c”*, cP))cOO* 

is a tensor product preserving isomorphism of bicategories. 

The local action of @(c,~) will be denoted by 

tiy (C @I : QZ(C, 8)(x, Y) + ((s2C(COP, @“*))(Y,X))“*. 

We adopt the following conventions when working in categories with finite sums. 

Given a family of arrows (fi : Xi + S)ic[n], where [n] is a natural number, let 

(fll...lfn> :X1+...+& -+ S be the unique arrow defined by the universal property of 

sums. If 4 : [j] + [n] is an injective function, write ix&,,+...+x,,,, : X$(l)+. . .+X+(j) --+ 

XI +. . . +X, for the obvious composite of an injection and symmetries (except in those 

circumstances where this notation would be ambiguous). 

Let C be a category that admits finite coproducts. Let $ denote the canonial tensor 

product on sZC(C,+). A process in (C,+) is called an Elgot automaton in C, and we 

write Elgot(C) for sZC(C, +). The concept of an Elgot automaton arose in the analysis 

of imperative programs [8,13]. 

Suppose (U, a) : X @ Y + 2 @ Y is an Elgot automaton with the property that there 

existsz:Y~U+Zsuchthat(lu+ZIz):U+Z+Y~U+Zisthecoequalizerof 

the pair ik, CI. iy :Y+U+Z+Y,wherei’,:Y-+U+Z+Yandir:Y+X+Y+U 

are injections. In this case, we say we can feed back Y in (U, IX) and r is called 

the structure map for feeding back Y in the process. Define (C, +),!& to be the full 

subcategory of Elgot(C)(X @ Y, Z & Y) consisting of those Elgot automata which have 

a structure map for feeding back Y. 

Proposition 13. The isomorphism @$G:,z+y restricts to an isomorphism 

where, of course, x = +O*. 
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A feedback operation for Elgot automata is now defined via the feedback operation 

for circuits. 

Definition 7. The functor fb(C, +)i,z : (C, +)g,, -+ Elgot(C)(X,Z) is the composite 

x+y z+y (yfii~+))-’ ’ (Wcop, x)&)op ’ Y(c,+j 

SO, if (U,cc) : X $ Y --+ Z $ Y is an Elgot automaton with a structure map r : Y + 

U + Z for feeding back Y, 

As the homomorphism @cc,+) preserves tensor products, it is clear that traced 

monoidal properties and the normal form theorem that were proved in Section 4 as 

well as the results relating feedback and delayed circuits in Section 2 are true for 

fb(C, +). Diagrams can also be drawn for expressions built out of the operations com- 

position, @ and tb(C, +). The only difference between Elgot diagrams - the diagrams 

for Elgot automata - and diagrams for circuits is that the diagonal and projection wires 

are replaced by the following codiagonal and injection wires: 

6.2. Interpretation of Elgot automata 

The reader is encouraged to think of an Elgot automaton in Set as a dynamical 

system (that is, as an object of SetN) equipped with a set of starting states and a set of 

equilibrium (or final) states. For example, consider the automaton (U, a) : X + Y as the 

dynamical system (M. iu 1 iy ) : U + Y --f U + Y, where CI. ix : X + U + Y defines the set 

of starting states and Y is the set of equilibrium states of the system. The ‘cobordism’ 

picture in Fig. 7 illustrates the features of an Elgot automaton. The diagram indicates 

there is a vector-field on the state-space of the system governing the motion of the 

automaton. While the map with domain X (determining the initial states) is arbitrary, 

the inclusion of the final states Y is cofibrant. In fact, via Grothendieck’s generalization 

of the semi-direct product construction, each Elgot automaton (U, cx) : X + Y in Set 
gives rise to a cospan X -i U + Y t r in Cat :X and 7 are the discrete categories 

with object-sets X and Y respectively; u+y is the category obtained by applying the 

Grothendieck construction to the presheaf ((a . iu 1 iy ) : U + Y + U + Y) E SetN; the 

fimctor x + U + Y is determined by the function CI. ix : X 4 U + Y; and 7 -+ U + Y 
is determined by the injection ir : Y -+ U+ Y. The functor 7 + U + Y is a cofibration 

in the sense of [lo]. 

As is indicated by the above picture, there may be problems with feeding back an 

Elgot automaton if the input is mapped onto the output. This problem can be avoided 
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Fig. 7. 

Fig. 8. 

by delaying either the input or the output of the process, since, as was the case with 

circuits, if (U, a) : X $ Y + Z @ Y is an Elgot automaton, Y can be fed back in 

either r( 17, ~1) or (U, cl)r. In terms of cobordism pictures, it would be fair to represent 

delaying a process by the addition of a tube: we could draw (U, a)r : X CB Y + Y CD Z 

as shown in Fig. 8 and fb&((U, a)~) : X --+ Z as shown in Fig. 9. 

By a behaviour of the Elgot automaton (U, ct) : X + Y we mean a behaviour of 

the dynamical system (CI . iu 1 iy ) : U + Y + U + Y that starts in X - that is, a 

sequence (Si)iEN E (U + Y)N together with x E X such that SO = o! . ix(x) and 

(a . iv 1 iy)(si) = xi+]. In fact, by drawing the Elgot diagram for an expression in 

Elgot(Set), a particular state of the system can be visualized as lying in one of the 

components of the diagram. In this sense, it is useful to think of a behaviour of the 

circuit as the behaviour of a pulse that enters the device at the input wires and then 

moves according to the dynamical laws given above, perhaps exiting the device at 

one of the output wires. Viewing an infinitesimal in this way, we see that a pulse 
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x0----- 

Fig. 9. 

entering the device will instantaneously exit on an output wire. It is, however, simpler 

to consider the inputoutput behaviour of an Elgot automaton. 

6.3. Input-output behaviours of Elgot automata 

In order to define the input-output behaviour of an Elgot automaton, the locally 

ordered bicategory of sets and partial functions need to the introduced. Bicategories of 

partial maps were defined in [5] and, as pointed out there, can be constructed from 

left exact categories. Left exactness, however, is not enough to equip the resulting 

bicategory of partial maps with a trace. Certainly, any topos will suffice. We content 

ourselves here with using sets and functions. 

Definition 8. The following data define Par, the locally ordered category of sets and 

partial functions: 

(a) An object in Par is a set. 

(b) An arrow from X to Y in Par is an isomorphism class of spans from X to Y 

of the form (i, U, f), where i : U + X is a monomorphism. The equivalence class to 

which (i, U,f) belongs will be written as [i, U,f]. 
(c) There is a 2-cell from [i, U,f] : X + Y to [j, V,g] : X -+ Y if and only if there 

is a 2-cell in Span from (i, U,f) to (j, V,g). Note that if such a 2-cell in Span exists, 

it is unique; in this case, we write [i, U,f] 5 [j, V,g]. 
Identities and compositions of arrows and 2-cells are inherited in the obvious way 

from Span. 

The coproduct in Set induces a tensor product on Par, which is also a coproduct. 

Explicitly, [i, U, f] + [j, V, g] = [i + j, U + V, f + gl. 
With respect to the coproduct, Par may be equipped with a traced monoidal structure. 

Given a partial function [j, U, g] : X + Y -+ Z + Y, we define Tr&[j, U, g] : X + Z as 

follows. (Of course, this operation Tr is not the same as the trace defined for (Rel, 8) 
in the previous section.) 
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First form the coequalizer 

iz+Y.s 

U-_;X+Y+ZLQ. 
i,Y*Y.i 

The claim is that q . iz : Z + Q is a monomorphism. Assuming this and taking the 

pullback 

yields a partial function [rc,,P, n2] : X 4 Z. We take this to be Tr&.[j, U,g]. 

Now, let us show that q . iz is a monomorphism. First, let -I be the relation on 

X + Y + Z defined by a -1 b if and only if there exists u E U such that iz+r . g(u) = a 

and ix+r .j(u) = b. If M is the symmetric relation generated by -I, Q is isomorphic 

to the set (X + Y + Z)/ -, where N is the smallest equivalence relation containing M. 

We want to show that if z, z’ E Z, z N z’ implies z = z’. Let M = iz+r s g and 

B = ix+y . j. Supposing z N z’, we know there exists ao, . . . , a, E X + Y + Z such that 

z=ao~:.~~aa,=z’. (We call this a chain from z to z’.) 

If n = 0, z = z’. If n = 1, there exists u E U such that /3(u) = z or /I(U) = z’; this 

is clearly impossible since /I(u) E X + Y. If n = 2, there exists ul, 24 E U such that 

z = a(~,), al = fl(ul), al = p(z.42) and z’ = ~(242). Since /I is injective, ~1 = 242 and, 

therefore, z = z’. 

Suppose n 2 3. Then there exists u1 ,...,u, E U such that a(ui) = z, a(~,) = z’ 

and, for all i E (2,. . . , r~ - l}, either CI(U~) = ai and p(ui) = ai- or a(ui) = ai_l and 

/3(ui) = ai. Clearly there exists i E (2,. . ., TI - 1) such that fi(ui_1) = ai- = p(ui), 

implying Ui-1 = ui and ai- = a(ui_1) = M(ui) = ai. Thus, z = a0 M ... z ai- M 

ai+l z . . . z a, = z ‘. By induction on the length of the chain from z to z’, we have 

that z = z’. So Tri,,[j, U,g] is well-defined. 

For example, given [l~+r,X+Y,g] : X+Y --+ Z+Y, calculate Triz[lx+r,X+Y,g] : 

X + Z. A moment’s thought will verify that TrJ,z[lx+r,X + Y,g] = [n,,P, 7c2], where 

P = {(x,z) E XZ 131 E N such that (iz+y g 1 iz)“(x) = z}. 

We have claimed that Tr is a trace for (Par, +). In fact, it was shown in [12] that 

(Rel, +) is a traced monoidal category, and it is clear that, with respect to the canonical 

inclusion Par + Rel, the trace that was there defined for (Rel, +) restricts to the trace 

we have just defined for (Par,+). 
We are now in a position to prove the main result of this section which will clarify 

our earlier remark regarding the input-output behaviour of an Elgot automaton. 
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Theorem 3. The data 

I/O : Elgot(Set) + Par 

:x++x 

: (U,C() : X + Y H Tr$!,[lx+u,X + U,c”,r x] 

define a tensor product and feedback preserving homomorphism of bicategories. 

Proof. First, let us see why I/O is defined on 2-cells. Let ,9 : (U, a) + (V, /?) : X + Y 

be a 2-cell in Elgot(Set). Remember that this means the diagram 

commutes. The universal property of the two coequalizers 

‘.Y c. 

X-+U *X+U+Y ’ -Q, 

‘.Y*l~ 

x+v 
* 

x+v+Y ” bQ' 
i, iI .P 

guarantees the existence (and uniqueness) of e : Q + Q’ such that 6 . q = q’ . (X + 

0 + Y). Therefore, q’ . ix = 6. q. ix and q’ . iy = 8. q . ir. Now, consider the pullback 

diagrams 

Since i?.q.ix.nl = e.q’.iy.xz we have q’.ix.z, = q’.iy.Tcz. By the universal property 

of pullbacks there exists a unique h : P -+ P’ such that TC{ . h = 711 and rci h = 712. 
Thus, 

I/O(U,a) = [711PP,~21 5 b’,>p’,~;l = W(V,P). 

The traced monoidal properties (for Par) are all that is needed for proving that 

I/O preserves composition, tensor products and feedback. The fact that the monoidal 

structure in this case is symmetric (rather than balanced) greatly simplifies calculations. 
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(ii) 

Y B, 

V 

I@ a u p v= 

A 

V 

u 

XA 

Z Z 

(iii) 

B B 

m UY = a YU 

x x 

Fig. 10. 

Note that the canonical functor Set + Par preserves sums. Thus, the preservation 

by I/O of (i) composition, (ii) tensor products and (iii) feedback corresponds to the 

easily verified equalities of string diagrams, shown in Fig. 10. (These diagrams are to 

be read from bottom to top, as in [ 121.) 

The term I/O is an abbreviation of the phrase input-output. Considering the starting 

states as inputs and the final states as outputs, the construction I/O abstracts from 
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an Elgot automaton the input&output aspect of its behaviours. The interpretations we 

give here to the terms input and output are different to those given in the sections on 

circuits. For example, an input for a circuit can be viewed as an action on the internal 

state, while an input for an Elgot automaton is an initial condition. Both these points of 

view are encompassed within the general notion of a process in a symmetric monoidal 

category. 

The structure preserving homomorphism I/O indicates there is a close relation be- 

tween our theory of bicategories of Elgot automata and the iteration theories of Bloom 

and Elgot [3] which attempt to capture the equational properties of the fixed-point 

operator in categories such as Par. 

7. Final remarks 

The reader familiar with concurrency may ask: what bearing does this theory of 

processes have on the study of distributed systems? The present paper provides a 

basis for developing a deeper theory of input-output systems. By no means have the 

definitions in this paper exhausted the notion of process. Other examples of processes 

have been studied in [ 151 in order to model asynchronous circuits. In fact, the sequel 

to this paper will investigate processes in a distributive category (admixtures of circuits 

and Elgot automata), structures that are related to the notion of an imperative program 

as defined in [17]. This is a key to understanding questions of independence and state 

reduction in complex systems [9, 14, 181. 

Also relevant to the analysis and design of distributed systems are the notions of 

abstraction and refinement. As both these terms refer to the comparison of an abstract 

model with a more concrete one, it is clear that the 2-cells of bicategories of processes 

are essential to the mathematical modelling of these concepts. The relationship between 

these ideas and those developed in [7] will bear closer examination. 
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